ENEM 2017 - LIBRAS

Prova resolvida

1. A energia elétrica nas instalações rurais pode ser obtida pela rede pública de distribuição ou por dispositivos alternativos que geram energia elétrica, como os geradores indicados no quadro.

Tipo	Geradores	Funcionamento		
I	A gasolina	Convertem energia térmica da queima da gasolina em energia elétrica.		
II	Fotovoltaicos	Convertem energia solar em energia elétrica e armazenam-na em baterias.		
III	Hidráulicos	Uma roda-d'água é acoplada a um dínamo, que gera energia elétrica.		
IV	A carvão	Com a queima do carvão, a energia térmica transforma-se em energia elétrica.		

Disponível em: www.ruralnews.com.br. Acesso em: 20 ago. 2014.

Os geradores que produzem resíduos poluidores durante o seu funcionamento são

a) I e II.

b) I e III.

c) I e IV.

d) II e III.

e) III e IV

Resolução: Alternativa C

Os geradores que liberam resíduos poluidores durante o seu funcionamento são aqueles que queimam gasolina e carvão, pois produzem fuligem $(C_{(s)})$, dióxido de carbono $(CO_{(g)})$.

2. A Química Verde pode ser definida como criação, o desenvolvimento e a aplicação de produtos e processos químicos para reduzir ou eliminar o uso e a geração de substâncias nocivas à saúde humana e ao meio ambiente.

Um recurso de geração de energia que obedeça a esses princípios é:

- a) Petróleo bruto.
- b) Carvão mineral.
- c) Biocombustivel.
- d) Usinas nucleares.
- e) Usinas termoelétricas.

Resolução: Alternativa C

Um recurso de geração de energia que obedeça a esses princípios é a utilização de biocombustíveis, os quais agridem menos o meio ambiente.

3. Em razão da grande quantidade de carboidratos, a mandioca tem surgido, juntamente com a cana-de-açúcar, como alternativa para produção de bioetanol. A produção de álcool combustível utilizando a mandioca está diretamente relacionada com a atividade metabólica de microrganismos.

Disponível em: www.agencia.cnptia.embrapa.br. Acesso em: 28 out. 2015 (adaptado).

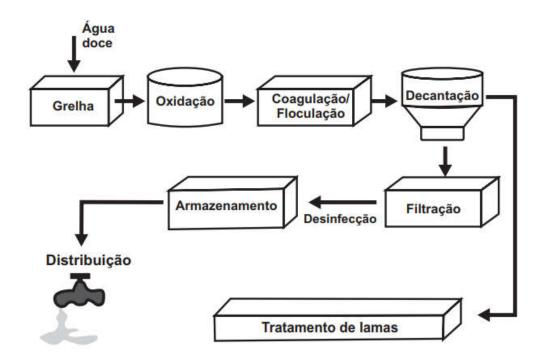
O processo metabólido envolvido na produção desse combustível é a

- a) respiração.
- b) degradação.
- c) fotossíntese.
- d) fermentação.
- e) quimiossíntese.

Resolução: Alternativa D

$$\begin{array}{c} \textbf{C}_{6}\textbf{H}_{12}\textbf{O}_{6} \\ \text{(glicose)} \\ \\ 2 \ \textbf{NAD} \\ \\ 2 \ \textbf{ADP} + 2 \textbf{P} \\ \\ 2 \ \textbf{NADH}_{2} \\ \\ & 2 \ \textbf{ATP} \\ \\ \textbf{C}_{3}\textbf{H}_{4}\textbf{O}_{3} \\ \text{(ácido pirúvico)} \\ \\ \textbf{CO}_{2} \\ \\ \textbf{CO}_{2} \\ \\ \textbf{C}_{2}\textbf{H}_{6}\textbf{O} \\ \text{(etanol)} \\ \end{array}$$

4. Plantas apresentam substâncias utilizadas para diversos fins. A morfina, por exemplo, extraída da flor da papoula, é utilizada como medicamento para aliviar dores intensas. Já a coniina é um dos componentes da cicuta, considerada uma planta venenosa. Suas estruturas moleculares são apresentadas na figura.


O grupo funcional comum a esses fitoquímicos é o(a)

- a) éter.
- b) éster.
- c) fenol.
- d) álcool.
- e) amina.

Resolução: Alternativa E

Observação teórica: o nome da função orgânica é amina.

5. A figura representa a sequência de etapas em uma estação de tratamento de água.

Disponível em: www.ecoguia.cm-mirandela.pt. Acesso em: 30 jul. 2012.

Qual etapa desse processo tem a densidade das partículas como fator determinante?

- a) Oxidação.
- b) Floculação.
- c) Decantação.
- d) Filtração.
- e) Armazenamento.

Resolução: Alternativa C

Na etapa de decantação as fases imiscíveis e que apresentam densidades diferentes são separadas pela ação da gravidade.

6. Alguns fenômenos observados no cotidiano estão relacionados com as mudanças ocorridas no estado físico da matéria. Por exemplo, no sistema constituído por água em um recipiente de barro, a água mantém-se fresca mesmo em dias quentes.

A explicação para o fenômeno descrito é que, nas proximidades da superficie do recipiente, a

- a) condensação do líquido libera energia para o meio.
- b) solidificação do líquido libera energia para o meio.
- c) evaporação do líquido retira energia do sistema.
- d) sublimação do sólido retira energia do sistema.
- e) fusão do sólido retira energia do sistema.

Resolução: Alternativa C

A evaporação que ocorre na superficie do líquido retira calor do sistema resfriando-o.

$$H_2O_{(\ell)} + calor \longrightarrow H_2O_{(v)}$$

7. Grandes quantidades de enxofre são lançadas na atmosfera diariamente, na forma de dióxido de enxofre (SO₂), como decorrência de atividades industriais e de queima de combustíveis fósseis.

Em razão da alta concentração desses compostos na atmosfera, regiões com conglomerados urbanos e polos industriais apresentam ocorrência sazonal de

- a) precipitação ácida.
- b) alteração do ciclo hidrológico.
- c) alteração no ciclo de carbono.
- d) intensificação do efeito estufa.
- e) precipitação de íons metálicos tóxicos na superficie.

Resolução: Alternativa A

A precipitação ácida pode ser descrita pela sequência reacional a seguir.

$$\begin{split} &SO_{2(g)} + \frac{1}{2}O_{2(g)} \longrightarrow SO_{3(g)} \\ &SO_{3(g)} + H_2O_{(\ell)} \longrightarrow H_2SO_{4(aq)} \end{split}$$

8. A ingestão de vitamina C (ou ácido ascórbico; massa molar igual a 176 g/mol) é recomendada para evitar o escorbuto, além de contribuir para a saúde de dentes e gengivas e auxiliar na absorção de ferro pelo organismo. Uma das formas de ingerir ácido ascórbico é por meio dos comprimidos efervescentes, os quais contêm cerca de 0,006 mol de ácido ascórbico por comprimido. Outra possibilidade é o suco de laranja, que contém cerca de 0,07 g de ácido ascórbico para cada 200 mL de suco.

O número de litros de suco de laranja que corresponde à quantidade de ácido ascórbico presente em um comprimido efervescente é mais próximo de

- a) 0,0002.
- b) 0,03.
- c) 0,3.
- d) 1.
- e) 3.

Resolução: Alternativa E

$$n_{\text{ácido ascórbico}} = 0,006 \text{ mol}$$

$$n_{\text{\'acido asc\'orbico}} = \frac{m_{\text{\'acido asc\'orbico}}}{M_{\text{\'acido asc\'orbico}}} \Rightarrow 0,006 = \frac{m_{\text{\'acido asc\'orbico}}}{176}$$

$$m_{\text{\'acido asc\'orbico}} = 1,056 \text{ g (por comprimido)}$$

$$0,07~\mathrm{g}$$
 de ácido ascórbico — $0,2~\mathrm{L}$ (200 mL)

$$V = 3,017 L \approx 3 L$$

9. O dióxido de nitrogênio é um gás tóxico produzido por motores de combustão interna e, para a sua detecção, foram construídos alguns sensores elétricos. Os desempenhos dos sensores foram investigados por meio de medições de resistência elétrica do ar na presença e ausência dos poluentes NO₂ e CO, cujos resultados estão organizados no quadro. Selecionou-se apenas um dos sensores, por ter apresentado o melhor desempenho na detecção do dióxido de nitrogênio.

	R (Ω)			
Sensor	Somente ar	Ar em presença de NO ₂	Ar em presença de CO	
I	$4,0 \times 10^{2}$	$3,2 \times 10^{3}$	$1,2 \times 10^3$	
II	$5,2 \times 10^{2}$	$3,8 \times 10^{5}$	$7,3 \times 10^4$	
III	$8,3 \times 10^{2}$	$5,6 \times 10^3$	$2,5 \times 10^5$	
IV	$1,5 \times 10^3$	$8,2 \times 10^{5}$	$1,7 \times 10^3$	
V	7.8×10^{4}	$9,3 \times 10^{5}$	8,1×10 ⁴	

Qual sensor foi selecionado?

a) I

b) II

c) III

d) IV

e) V

Resolução: Alternativa D

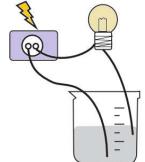
Deve-se procurar o sensor a maior relação entre o NO₂ e CO:

	R (Ω)		
Sensor	Ar em presença de NO ₂	Ar em presença de CO	Relação NO ₂ /CO
I	$3,2 \times 10^{3}$	$1,2 \times 10^3$	$\frac{3,2\times10^3}{1,2\times10^3}=2,7$
II	3.8×10^{5}	7,3×10 ⁴	$\frac{3.8 \times 10^5}{7.3 \times 10^4} = 5.2$
III	$5,6 \times 10^3$	$2,5 \times 10^5$	$\frac{5.6 \times 10^3}{2.5 \times 10^5} = 0.0224$
IV	8,2×10 ⁵	$1,7\times10^3$	$\frac{8,2\times10^5}{1,7\times10^3} = 482,35$
V	9,3×10 ⁵	8,1×10 ⁴	$\frac{9,3\times10^5}{8,1\times10^4}=11,48$

Conclusão: sensor IV.

10. Quando se abre uma garrafa de vinho, recomenda-se que seu consumo não demande muito tempo. À medida que os dias ou semanas se passam, o vinho pode se tornar azedo, pois o etanol presente sofre oxidação e se transforma em ácido acético.

Para conservar as propriedades originais do vinho, depois de aberto, é recomendável


- a) colocar a garrafa ao abrigo de luz e umidade.
- b) aquecer a garrafa e guardá-la aberta na geladeira.
- c) verter o vinho para uma garrafa maior e esterilizada.
- d) fechar a garrafa, envolvê-la em papel alumínio e guardá-la na geladeira.
- e) transferir o vinho para uma garrafa menor, tampá-la e guardá-la na geladeira.

Resolução: Alternativa E

É recomendável transferir o vinho para uma garrafa menor, tampá-la e guardá-la na geladeira para evitar a oxidação (contato com o oxigênio do ar) e diminuir a velocidade das reações envolvidas neste processo.

11. Realizou-se um experimento, utilizando-se o esquema mostrado na figura, para medir a condutibilidade elétrica de soluções. Foram montados cinco *kits* contendo, cada um, três soluções de mesma concentração, sendo uma de ácido, uma de base e outra de sal. Os *kits* analisados pelos alunos foram:

Kit	Solução 1	Solução 2	Solução 3
1	H_3BO_3	$Mg(OH)_2$	AgBr
2	H_3PO_4	Ca(OH) ₂	KCℓ
3	H ₂ SO ₄	$NH_3 \cdot H_2O$	AgBr
4	HCℓO ₄	NaOH	NaCℓ
5	HNO_3	Zn(OH) ₂	CaSO ₄

Qual dos kits analisados provocou o acendimento da lâmpada com um brilho mais intenso nas três soluções?

a) Kit 1.

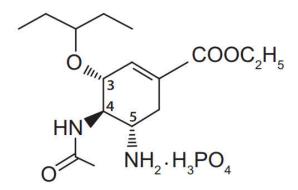
b) Kit 2.

c) Kit 3.

d) Kit 4.

e) Kit 5

Resolução: Alternativa D


Quanto maior a quantidade de íons em solução, maior a intensidade do brilho da lâmpada.

Kit	Solução 1	Solução 2	Solução 3
1	$H_3BO_3 \Rightarrow 3-3=0$ (ácido fraco)	$Mg(OH)_2 \Rightarrow base fraca$	AgBr (sal muito pouco solúvel)
2	$H_3PO_4 \Rightarrow 4-3=1$ (ácido moderado)	$Ca(OH)_2 \Rightarrow base forte$	KCℓ (sal 100 % solúvel)
3	$H_2SO_4 \Rightarrow 4-2=2$ (ácido forte)	$\underbrace{NH_3 \cdot H_2O}_{(NH_4OH)} \Rightarrow \text{base fraca})$	AgBr (sal muito pouco solúvel)
4	$HC\ell O_4 \Rightarrow 4-1=3$ (ácido forte)	NaOH ⇒ base forte (Na: metal alcalino)	NaCℓ (sal 100 % solúvel)
5	$HNO_3 \Rightarrow 3-1=2$ (ácido forte)	$Zn(OH)_2 \Rightarrow base fraca$	CaSO ₄ (sal parcialmente solúvel)

Conclusão:

Kit	HCℓO ₄	NaOH	NaCℓ
4	(ácido forte)	(base forte)	(sal 100 % solúvel)

12. A figura representa a estrutura química do principal antiviral usado na pandemia de gripe antiviral usado na pandemia de gripe H1N1, que se iniciou em 2009.

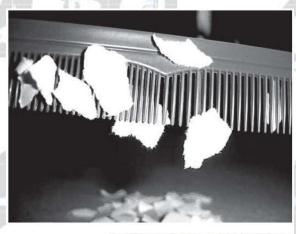
Qual é o número de enantiômeros possíveis para esse antiviral?

a) 1

b) 2

c) 6

d) 8


e) 16

Resolução: Alternativa D

A molécula representada apresenta 3 carbonos quirais ou assimétricos (*): $\left(\text{Número de enantiômeros}\right) = 2^{(\text{Número de carbonos quirais})} = 2^3 = 8$

13. Um pente plástico é atritado com papel toalha seco.

A seguir ele é aproximado de pedaços de papel que estavam sobre a mesa. Observa-se que os pedaços de papel são atraídos e acabam grudados ao pente, como mostra a figura.

Disponível em: http://ogostoamargodometal.wordpress.com.

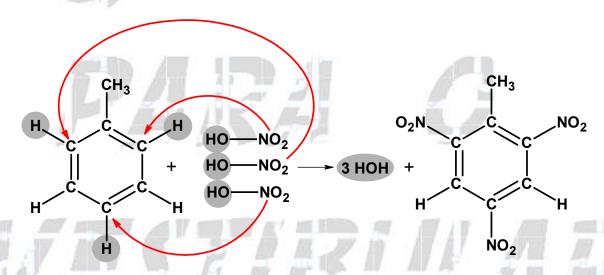
Nessa situação, a movimentação dos pedaços de papel até o pente é explicada pelo fato de os papeizinhos

- a) serem influenciados pela força de atrito que ficou retida no pente.
- b) serem influenciados pela força de resistência do ara em movimento.
- c) experimentarem um campo elétrico capaz de exercer forças elétricas.
- d) experimentarem um campo magnético capaz de exercer forças magnéticas.
- e) possuírem carga elétrica que permite serem atraídos ou repelidos pelo pente.

Resolução: Alternativa C

Com o atrito elétrons são transferidos de um material para o outro, surgindo assim um campo elétrico (experimento de eletrização), no qual a região positiva de um material atrai a região negativa do outro.

14. O trinitrotolueno (TNT) é um poderoso explosivo obtido a partir da reação de nitração do tolueno, como esquematizado.


$$\begin{array}{c|c} CH_3 & CH_3 \\ \hline \\ H_2SO_4 & NO_2 \end{array}$$

A síntese do TNT é um exemplo de reação de

- a) neutralização.
- b) desidratação.
- c) substituição.
- d) eliminação.
- e) oxidação.

Resolução: Alternativa C

A síntese do TNT é um exemplo de reação de substituição.

15. O polietileno é formado pela polimerização do eteno, sendo usualmente obtido pelo craqueamento da nafta, uma fração do petróleo. O "plástico verde" é um polímero produzido a partir da cana-de-açúcar, da qual se obtém o etanol, que é desidratado a eteno, e este é empregado para a produção do polietileno. A degradação do polietileno produz gás carbônico (CO₂), cujo aumento da concentração na atmosfera contribui para o efeito estufa.

Qual a vantagem de se utilizar eteno da cana-de-açúcar para produzir plástico?

- a) As fontes utilizadas são renováveis.
- b) Os produtos gerados são biodegradáveis.
- c) Os produtos gerados são de melhor qualidade.
- d) Os gases gerados na decomposição estão em menor quantidade.
- e) Os gases gerados na decomposição são menos agressivos ao ambiente.

Resolução: Alternativa A

As fontes utilizadas são renováveis, ou seja, a cana-de-açúcar pode ser replantada e colabora na absorção de gás carbônico da atmosfera pelo processo da fotossíntese.

16. A escassez de água doce é um problema ambiental. A dessalinização da água do mar, feita por meio de destilação, é uma alternativa para minimizar esse problema.

Considerando os componentes da mistura, o princípio desse método é a diferença entre

- a) suas velocidades de sedimentação.
- b) seus pontos de ebulição.
- c) seus pontos de fusão.
- d) suas solubilidades.
- e) suas densidades.

Resolução:

Alternativa B

A temperatura de ebulição da mistura conhecida como água doce é menor do que a temperatura de ebulição da mistura conhecida como água do mar.

17. Um pediatra prescreveu um medicamento, na forma de suspensão oral, para uma criança pesando 16 kg. De acordo com o receituário, a posologia seria de 2 gotas por kg da criança, em cada dose. Ao adquirir o medicamento em uma farmácia, o responsável pela criança foi informado que o medicamento disponível continha o princípio ativo em uma concentração diferente daquela prescrita pelo médico, conforme mostrado no quadro.

Medicamento	Concentração do princípio ativo (mg/gota)
Prescrito	5,0
Disponível comercialmente	4,0

Quantas gotas do medicamento adquirido a criança deve ingerir de modo que mantenha a quantidade de princípio ativo receitada?

a) 13

c) 32 d) 40 e) 128

Resolução: Alternativa D

Prescrição:

- 1 kg de criança

16 kg de criança

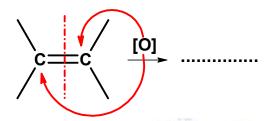
 $n_{gotas} = 32 \text{ gotas}$

Prescrito = $32 \text{ gotas} \times 5 \text{ mg} = 160 \text{ mg}$

Disponível comercialmente = 4 mg/gota

$$160 \ mg ----- n'_{gotas}$$

$$n'_{gotas} = 40 gotas$$


18. A maioria dos alimentos contém substâncias orgânicas, que possuem grupos funcionais e/ou ligações duplas, que podem ser alteradas pelo contato com o ar atmosférico, resultando na mudança do sabor, aroma e aspecto do alimento, podendo também produzir substâncias tóxicas ao organismo. Essas alterações são conhecidas rancificação do alimento.

Essas modificações são resultantes de ocorrência de reações de

- a) oxidação.
- b) hidratação.
- c) neutralização.
- d) hidrogenação.
- e) tautomerização.

Resolução: Alternativa A

Essas modificações são resultantes de ocorrência de reações de oxidação.

19. Com o objetivo de avaliar os impactos ambientais causados pela ocupação urbana e industrial numa região às margens de um rio e adotar medidas para a sua despoluição, uma equipe de técnicos analisou alguns parâmetros de uma amostra de água desse rio.

O quadro mostra os resultados obtidos em cinco regiões diferentes, desde a nascente até o local onde o rio deságua no mar.

Parâmetros	O ₂ dissolvido (mg/L)	DBO* (mg/L)	Zinco dissolvido (mg/L)	Coliformes fecais/L
Região 1	9	4	0	10
Região 2	8,5	5	3,2	1,9 mil
Região 3	0,5	33	0,10	2,5 milhões
Região 4	0	89	0,04	45 milhões
Região 5	0	29	0,01	600

^{*} Demanda bioquímica de oxigênio. Quantidade de oxigênio consumido pelas bactérias para decompor a matéria orgânica.

Na tentativa de adotar medidas para despoluir o rio, as autoridades devem concentrar esforços em ampliar o saneamento básico e as estações de tratamento de esgoto principalmente na região

- a) 1.
- b) 2.
- c) 3.
- d) 4.
- e) 5.

Resolução: Alternativa D

A região 4 apresenta a maior demanda bioquímica de oxigênio, o que demonstra uma enorme quantidade de bactérias presentes, além de 0 mg/L de oxigênio dissolvido e a maior quantidade de coliformes fecais por litro (45 milhões).